Finite Time Blow-up of a 3D Model for Incompressible Euler Equations

نویسندگان

  • Thomas Y. Hou
  • Zhen Lei
چکیده

We investigate the role of convection on its large time behavior of 3D incompressible Euler equations. In [15], we constructed a new 3D model by neglecting the convection term from the reformulated axisymmetric Navier-Stokes equations. This model preserves almost all the properties of the full Navier-Stokes equations, including an energy identity for smooth solutions. The numerical evidence presented in [15] seems to support that the 3D model may develop a finite time singularity. In this paper, we prove rigorously that the 3D inviscid model develops a finite time singularity for a family of smooth initial data whose energy is finite and conserved in time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Time Blow-up for the 3D Incompressible Euler Equations

We prove the finite time blow-up for solutions of the 3D incompressible Euler equations, which happens along the fluid particle trajectories starting from a set of points. This set is specified by the relation between the deformation tensor and the Hessian of pressure both coupled with the vorticity directions, associated with the initial data. As a corollary of this result we prove the finite ...

متن کامل

On the Finite-time Blowup of a 1d Model for the 3d Axisymmetric Euler Equations

In connection with the recent proposal for possible singularity formation at the boundary for solutions of 3d axi-symmetric incompressible Euler’s equations (Luo and Hou, 2014a), we study models for the dynamics at the boundary and show that they exhibit a finite-time blow-up from smooth data.

متن کامل

On the blow-up problem for the axisymmetric 3D Euler equations

In this paper we study the finite time blow-up problem for the axisymmetric 3D incompressible Euler equations with swirl. The evolution equations for the deformation tensor and the vorticity are reduced considerably in this case. Under the assumption of local minima for the pressure on the axis of symmetry with respect to the radial variations we show that the solution blows-up in finite time. ...

متن کامل

Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations

Whether the 3D incompressible Euler and Navier–Stokes equations can develop a finite-time singularity from smooth initial data with finite energy has been one of the most long-standing open questions. We review some recent theoretical and computational studies which show that there is a subtle dynamic depletion of nonlinear vortex stretching due to local geometric regularity of vortex filaments...

متن کامل

Incompressible Euler Equations : the blow - up problem and related results

The question of spontaneous apparition of singularity in the 3D incompressible Euler equations is one of the most important and challenging open problems in mathematical fluid mechanics. In this survey article we review some of recent approaches to the problem. We first review Kato’s classical local well-posedness result in the Sobolev space and derive the celebrated Beale-Kato-Majda criterion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012